UGC NET Paper 2 - Computer Science and Applications - Code No.:(87)

Unit 1: Discrete Structures and Optimization

- Mathematical Logic
- **2. Sets and Relations**
- 3. Counting, Mathematical Induction and Discrete Probability
- 4. Group Theory
- 5. Graph Theory
- 6. Boolean Algebra
- 7. Optimization

2. Sets and Relations

- 1. Set Operations
- 2. Representation and Properties of Relations
- 3. Equivalence Relations
- 4. Partially Ordering.

Set: A set is the collection of individual elements in the domain D.

Cardinality of a Set:

Number of elements in a set

Cardinality of a set S, denoted by |S|

Eg.: $X = \{1,2,3\}$ and $Y = \{2,3,1\}$ here, $|X|=|Y|$

i.e., cardinal number of set $X =$ cardinal number of set $Y = 3$

Types of Sets:

- **1. Finite**: Eg. X={1,2,3}
- **2. Infinite**: Eg: Set of whole numbers i.e: $W = \{0,1,2,3,...\}$
- **3. Empty Set / Null Set / Void Set** : Eg: A=⏀
- **4. Singleton Set** / Unit Set: Eg: $S = \{x | x \in N, 7 < x < 9\} = \{8\}$
- **5. Universal Set** U:
	- 1. Superset of all the sets under consideration.
	- 2. Eg.: Let U=Universal Set and A be any set then A' is compliment of A given by A'={x:x \notin A and $x \notin U$ }
	- 3. Let $U = \{1,2,3,4,5\}$ and $A = \{1,4\}$ then $A' = \{2,3,5\}$
- **6. subset** X⊆Y:
	- 1. if every element of X is an element of set Y.
	- 2. if set A has n elements, then total number of subset of A is $2ⁿ$
	- 3. Eg: A= $\{1,2\}$, then subset of A are $\{\}$, $\{1\}$, $\{2\}$ and $\{1,2\}$

7. proper subset X⊂Y:

- 1. if every element of X is an element of set Y and $|X| \le |Y|$.
- 2. (subset of the set but not equal to)

8. Power Set:

- 1. If set A has n elements then power set $P(A)$ will have 2^n elements
- 2. Notation: $n[P(A)] = 2^n$ Where $|A|=n$
- 3. Eg: If S={a,b,c} then P(S)={ Φ ,{a},{b},{c},{a,b},{a,c},(b,c},{a,b,c}} where |S|=3 ∴ P(S) has $2^3 = 8$ eleme

 $\left(\varphi\right)$

 $\overline{\mathbb{L}}$

Bell Numbers (denoted by Bn): Bell numbers give the count of the number of ways to partition a set. Eg: Let $S=\{1,2,3\}$, n=|S|=3. The alternate partitions are $-$

1. φ , {1,2,3} 2. {1}, {2,3} 3. {1,2}, {3} 4. {1,3}, {2} 5. {1}, {2}, {3} Hence $B_3 = 5$

Relations: Relations may exist between objects of the same set or between objects of two or more sets.

Notation: aRb means $(a,b) \in R$ and b¬Ra means $(a,b) \notin R$

Types of relations:

1. Binary Relation

A binary relation R on 2 sets A and B is a subset of $A \times B$. Eg: Given A={1,2,9} B={1,3,7} Then, A×B = {(1,1),(1,3),(1,7),(2,1),(2,3),(2,7),(9,1),(9,3),(9,7)} If R is relation where $(a,b) \in R$ if and only if a=b then $R = \{(1,1)\}\$. Hence $R \subseteq AXB$

A binary relation R on a single set A is a subset of $A \times A$ Eg: Given A={1,2,9, B={1,3,7} Then, A×A={(1,1),(1,2),(1,9),(2,1),(2,2),(2,9),(9,1),(9,2),(9,9)} R is relation where $(a,b) \in R$ if and only if a=b then $R = \{(1,1)\}\.$ Hence $R \subseteq AXB$

2. Empty Relation / Void Relation: Relation $R = \emptyset$, on set A and B

3. **Full Relation / Universal Relation**: Relation R= A×B, on set A and B

4. **Inverse Relation**: R′={(b,a)|(a,b)∈R} Eg: If R={(1,2),(2,3)} then R′ will be {(2,1),(3,2)}

5. **Identity Relation:** $I_A = \{(1,1), (2,2), (3,3)\}$ Eg: If A={1,2,3}. Then, $I_A = \{(1,1), (2,2), (3,3)\}$

Reflexive v/s Identity Relation:

Reflexive Relation can include additional pairs beyond the self-related pairs. While identity relation is a specific type of reflexive relation which include self-related pairs only. Eg: If A={1,2,3}. Then, $I_A = \{(1,1), (2,2), (3,3)\}$ is a Identity Relation and also reflexive Relation While $R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$ is a reflexive Relation but not an Identity Relation

Equivalence Relation: A relation R is an Equivalence Relation if and only if it is:

- Reflexive, i.e, \forall a \in A, $(a,a) \in R$
- Symmetric: if $(a,b) \in R \implies (b,a) \in R$
- Transitive, i.e., if $(a,b) \in R$ and $(b,c) \in R \implies (a,c) \in R$

Partially Ordering: A relation R is Partially Ordering if and only if it is:

- Reflexive, i.e, \forall a \in A, $(a,a) \in R$
- Anti-symmetric: if $(a,b) \in R$ and $(b,a) \in R \Rightarrow a=b$
- Transitive, i.e., if $(a,b) \in R$ and $(b,c) \in R \implies (a,c) \in R$

Number of possible relations on 2 sets:

- Let A and B be 2 sets with m and n elements respectively
- Then number of elements of AxB is mn
- Therefore, number of elements in power set of AxB is 2^{mn}
- Thus, AxB has 2^{mn} different subsets.
- Hence No. of possible relations on set A and B are 2^{mn}

Eg: Let $A = \{1,2\}$ and $B = \{1,3,7\}$ Then, calculate number of possible relation from set A to B?

- $|A|=2$, $|B|=3$ ∴ $|AxB|=2x3=6$
- Hence number of elements in power set of AxB = number of possible sub-sets of AxB = number of possible relation from set A to $B = 2^6 = 64$

Representation of Relations

1. Relation as a Matrix:

Let $P = \{a1, a2, a3, \dots, a m\}$, $Q = \{b1, b2, b3, \dots, b n\}$ and R is a relation from P to Q. Then R can be represented by m x n matrix M = [Mij], defined as $M_{ij} = \begin{cases} 0 & \text{if } (ai,bj) \notin R \\ 1 & \text{if } (ai,bj) \in R \end{cases}$ 1 *if*(ai,bj)∈ R Eg: Let $P = \{1, 2, 3, 4\}$, $Q = \{a, b, c, d\}$ and $R = \{(1, a), (1, b), (1, c), (2, b), (2, c), (2, d)\}.$

$$
M_R = \begin{matrix} P \setminus Q & a & b & c & d \\ 1 & 1 & 1 & 0 \\ 2 & 0 & 1 & 1 \\ 3 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{matrix}
$$

2. Relation as a Directed Graph Eg: $R = \{(1,1), (1,2), (3,2)\}$ is a relation on set $S = \{1,2,3\}$ $\left(1\right)$

3. Relation as a Table

Eg: Let $P = \{1, 2, 3, 4\}$, $Q = \{x, y, z, k\}$ and $R = \{(1, x), (1, y), (2, z), (3, z), (4, k)\}.$

4. Relation as Mapping:

Mapping: represents rule or relationship between sets.

- Domain: set of all input values for which the mapping is defined.
- Codomain: set of all possible output values that can result from the mapping
- Range: set of all output values that are actually produced by the mapping when elements from the domain are used as inputs.

Eg: Consider a mapping $M = \{(1,a),(2,b),(3,b)\}\)$ from set $A = \{1,2,3\}\)$ to set $B = \{a,b,c,d\}$ Domain: $A = \{1,2,3\}$

```
Codomain: B = \{a,b,c,d\}
```
Range: {a,b}

Function:

- Function v/s relation/mapping: A function is a unique valued relation/mapping. i.e., every element of A is mapped to only one element of B. However element of B maybe related to more than one element of A.
- Notation: f:A->B, means that f is a mapping that takes all the element of A and match each to a unique element of
- Image/f-image/function-image and Pre-image:
	- Every element of domain has exactly one image in codomain.
	- Elements of co-domin may have one or more pre-images in Domain.
	- $f(A) \subseteq B$ and $F \subseteq AxB$ where, $f(A) = Range$ of f

Inverse of a Function: f:A→B then inverse of f is g:B→A i.e., $f(x)=y \Leftrightarrow g(y)=x$ Eg: f:Z→Z,f(x)=x+5 then inverse function g:Z→Z,g(y)=y-5 f(x)=x+5 => y=x+5 => y-5=x => x=y-5 => g(y)=y-5

Composition of Functions: Two functions f:A→B and g:B→C can be composed to give a composition:

- fog. fog:A- \geq C defined by (fog)(x)=f(g(x)) or
- gof:C->A defined by $gof(x)=g(f(x))$

Note: If f and g are one-to-one then fog and gof are also one-to-one If f and g are onto then fog and gof are also onto Composition always holds associative property i.e., (f∘g)∘h=f∘(g∘h) Composition does not hold commutative property i.e., (f∘g) (g∘f)

Types of mapping:

1. Injective / One-to-one mapping: A function f:A→B is injective, if ∀ b∈B, ∃ at most one a∈A i.e., f is injective if a1 \neq a2=>f(a1) \neq f(a2) or equivalently f is injective if f(a1)=f(a2)=>a1=a2

2. Surjective / Onto Mapping: here f(A) = B i.e., Range=Co-domain for f:A->B

3. Bijective / One-to-one Correspondent: A function f:A→B is bijective or one-to-one correspondent if and only if f is both injective and surjective

4. Non-Injective /Many-to-one Mapping: A function f:A→B is many-to-one if more than one elements in A have the same function-images in B

5. Into Mapping: A function f:A→B is into if there is at least one element in B which is not the f-image of any element in A. i.e., $f(A) \subset B$

6. Non-Surjective / One-to-Many Mapping: A single element in the domain maps to multiple elements in the codomain.

2. Sets and Relations

- **Set Operations**
- 2. Representation and Properties of Relations
- 3. Equivalence Relations
- 4. Partially Ordering.
- 1. Set
- Cardinality of a Set
- 3. Representation of a Set: Roster/Tabular Form and Set Builder Notation
- 4. Types of Sets (12): Finite, Infinite, Empty/ Null/Void, Singleton/Unit, Universal, Power, Equal, Equivalent, Overlapping, Disjoint
- 5. Set Operations (6): Union:∪, Intersection:∩, Difference/Relative Complement A–B or $A \ B$, Symmetric Difference: A∆B, Complement, Cartesian Product/Cross Product, Partitioning
- 6. Bell Numbers
- 7. Relations
- 8. Types of relations(5): Binary, Empty/Void, Full/Universal, Inverse, Identity
- 9. Reflexive v/s Identity Relation
- 10. Properties of Relations(6): Reflexive, Irreflexive/Anti-Reflexive, Symmetric, Anti-Symmetric, Asymmetric, Transitive
- 11. Equivalence Relation
- 12. Partially Ordering
- 13. Number of possible relations on 2 sets:
- 14. Representation of Relations(4): Matrix, Directed Graph, Table, Mapping
- 15. Function
- 16. Inverse of a Function
- 17. Composition of Functions
- 18. Types of mapping(6): Injective/One-to-one, Surjective/Onto, Bijective/One-to-one Correspondent, Non-Injective/Many-to-one, Into, Non-Surjective/One-to-Many