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Unit 1: Discrete Structures and Optimization

1. Mathematical Logic

2. Sets and Relations

3. Counting, Mathematical Induction and Discrete Probability

4. Group Theory 

5. Graph Theory

6. Boolean Algebra 

7. Optimization



Mathematical Logic: 
1. Propositional and Predicate 

Logic
2. Propositional Equivalences 
3. Normal Forms
4. Predicates and Quantifiers
5. Nested Quantifiers
6. Rules of Inference

Counting, Mathematical Induction and 
Discrete Probability: 
1. Basics of Counting, 
2. Pigeonhole Principle
3. Permutations and Combinations
4. Inclusion- Exclusion Principle
5. Mathematical Induction
6. Probability
7. Bayes’ Theorem

Graph Theory: 
1. Simple Graph
2. Multigraph
3. Weighted Graph
4. Paths and Circuits
5. Shortest Paths in Weighted Graphs
6. Eulerian Paths and Circuits
7. Hamiltonian Paths and Circuits
8. Planner graph
9. Graph Coloring
10. Bipartite Graphs
11. Trees and Rooted Trees
12. Prefix Codes
13. Tree Traversals
14. Spanning Trees and Cut-Sets

Sets and Relations: 
1. Set Operations
2. Representation and Properties of 

Relations
3. Equivalence Relations
4. Partially Ordering. 

Group Theory: 
1. Groups, Subgroups
2. Semi Groups
3. Product and Quotients of Algebraic 

Structures
4. Isomorphism
5. Homomorphism
6. Automorphism
7. Rings
8. Integral Domains
9. Fields
10. Applications of Group Theory 

Optimization:
1. Linear Programming - Mathematical 

Model
2. Graphical Solution
3. Simplex and Dual Simplex Method
4. Sensitive Analysis
5. Integer Programming
6. Transportation and Assignment Models
7. PERT-CPM: Diagram Representation
8. Critical Path Calculations
9. Resource Levelling
10. Cost Consideration in Project Scheduling. 

Boolean Algebra: 
1. Boolean Functions and its Representation
2. Simplifications of Boolean Functions. 



1. Mathematical Logic

1. Propositional and Predicate Logic
2. Propositional Equivalences 
3. Normal Forms
4. Predicates and Quantifiers
5. Nested Quantifiers
6. Rules of Inference



Propositional Logic / Boolean Logic: A proposition is 
a collection of declarative statements that has either a 
truth value "true” or a truth value "false".

Examples of Propositions 
• "Man is Mortal", it returns truth value “TRUE”
• "12 + 9 = 3 – 2", it returns truth value “FALSE”

Propositional Logic consists of: 
1. propositional variables
2. Connectives: connectives connect the propositional 

variables.
q OR (∨)
q AND (∧)
q Negation/ NOT (¬)
q Implication / if-then / conditional statement (→)
q If and only if / bi-conditional statement (⇔).

Terminologies:
1. Tautologies: always true 
2. Contradictions: always false 
3. Contingency: has both some true and some false 

values

Implication 
if-then (→)

A B A → B

True True True

True False False

False True True

False False True

bi-conditional 
If and only if (⇔)

A B A ⇔ B

True True True

True False False

False True False

False False True

OR (∨)

A B A ∨ B

True True True

True False True

False True True

False False False

AND (∧)

A B A ∧ B

True True True

True False False

False True False

False False False

Negation
NOT (¬)

A ¬ A

True False

False True



Note:

• Inverse, Converse, and Contra-positive 

Implication / if-then / conditional statement (→) has two parts − 

p→q where,

1. Hypothesis, p

2. Conclusion, q 

Inverse, Converse, and Contra-positive of conditional statement: 

Eg: p→q || IF you do your homework -> THEN you will not be punished

• Inverse: ¬p→¬q || IF you do not do your homework, THEN you will be punished

• Converse: q→p || IF you will not be punished, THEN you do your homework

• Contra-positive: ¬q→¬p || IF you are punished, THEN you did not do your homework 



Propositional Equivalences: 

Two statements X and Y are logically equivalent if any of 

the following two conditions hold −

q The truth tables of each statement have the same truth 

values.

q The bi-conditional statement X⇔Y is a tautology.

Example: 

Prove ¬(A∨B)and[(¬A)∧(¬B) are equivalent

Testing by 1st method (Matching truth table)

A B A ∨ B ¬ (A ∨ B) ¬ A ¬ B [(¬ A) ∧ (¬ B)]

True True True False False False False

True False True False False True False

False True True False True False False

False False False True True True True

truth values of ¬(A∨B)and[(¬A)∧(¬B) are same, hence the 
statements are equivalent.

Testing by 2nd method (Bi-conditionality)

A B ¬ (A ∨ B ) [(¬ A) ∧ (¬ B)] [¬ (A ∨ B)] ⇔ [(¬ A ) ∧ (¬ B)]

True True False False True

True False False False True

False True False False True

False False True True True

As [¬(A∨B)]⇔[(¬A)∧(¬B)] is a tautology, the statements are equivalent.

bi-conditional  
If and only if (⇔)

Exp.1 Exp.2 Exp.1 ⇔ Exp.2

True True True

True False False

False True False

False False True

Tautologies: always true

Exp.1 Exp.2 Tautologies

True True True

True False True

False True True

False False True



Normal Forms: 

We can convert any proposition in two normal forms −

1. Conjunctive normal form: A compound statement is in conjunctive normal form if it is obtained by operating 

AND among variables (negation of variables included) connected with ORs. In terms of set operations, it is a 

compound statement obtained by Intersection among variables connected with Unions. Examples

• (A∨B)∧(A∨C)∧(B∨C∨D)

• (P∪Q)∩(Q∪R)

2. Disjunctive normal form: A compound statement is in disjunctive normal form if it is obtained by operating OR 

among variables (negation of variables included) connected with ANDs. In terms of set operations, it is a 

compound statement obtained by Union among variables connected with Intersections. Examples

• (A∧B)∨(A∧C)∨(B∧C∧D)

• (P∩Q)∪(Q∩R)



Predicate Logic: 

• A predicate is an expression of one or more variables defined on some specific domain. 

• A predicate with variables can be made a proposition by either assigning a value to the variable or by quantifying 

the variable. 

• Predicate Logic deals with predicates, which are propositions containing variables. 

• examples of predicates: 

q Let E(x, y) denote "x = y"

q Let X(a, b, c) denote "a + b + c = 0"

q Let M(x, y) denote "x is married to y”



Quantifiers: There are two types of quantifier s in predicate logic − 

1. Universal Quantifier ∀: denoted by the symbol ∀ (while the symbol ∀ is read as “For all”)

• Notation: ∀xP(x) { Read as: “For all x, P(x)”, “For every x, P(x)” }

• Universal quantifier of P(x) is the statement “ P(x) is true for all values of x in the domain”

• Example − Let P(x) = “x+1 > x” where domain = set of positive integers

• Check: x=1 ; 1+1 > 1 ∴ P(x) is true

• x=2 ; 2+1 > 2 ∴ P(x) is true

• x=3 ; 3+1 > 3 ∴ P(x) is true

• Since P(x) is true for all values of x ∴ P(x) = “x+1 > x” is a Universal Quantifier 

2. Existential Quantifier ∃: denoted by the symbol ∃ (while the symbol ∃ is read as “There exists”)

• Notation: ∃xP(x) { Read as: “There exist an x such that P(x)”, “There is at least one x such that P(x)”, “For some x P(x)” }

• Existential quantifier of P(x) is the statement “ There exists an element x in the domain such that P(x)”

• Example − Let P(x) = “x2 > 10” where domain = {1,2,3,4}

• Check: x=1 ; 12 > 10 ∴ P(x) is false

• x=2 ; 22 > 10 ∴ P(x) is false

• x=3 ; 32 > 10 ∴ P(x) is false

• x=4 ; 42 > 10 ∴ P(x) is true

• Since P(x) is true for x=4 ∴  P(x) = “x2 > 10” is an Existential Quantifier 

Domain specifies 
possible values of the 
variable under 
consideration.



Nested Quantifiers: Two quantifiers are nested if one is within the scope of the other.

Different combinations of nested quantifiers

• ∀x ∀y Q(x,y) Here Order of quantifiers doesn't matter i.e., ∀x ∀y Q(x,y) = ∀y ∀x Q(x,y)

• ∀x ∃y Q(x,y) Here Order of quantifiers does matter i.e., ∀x ∃y Q(x,y) ≠ ∃y ∀x Q(x,y) 

• ∃x ∀y Q(x,y) Here Order of quantifiers does matter i.e., ∃x ∀y Q(x,y) ≠ ∀y ∃x Q(x,y)

• ∃x ∃y Q(x,y) Here Order of quantifiers doesn't matter i.e., ∃x ∃y Q(x,y) = ∃y ∃x Q(x,y)

Note: 

Anything within the scope of a quantifier can be thought as a prepositional function 

For example: ∀x ∃y Q(x,y)

Here essential quantifier is within the scope of a universal quantifier 

Therefore, we can write it as: ∀x P(x)

∀x ∃y Q(x,y) = ∀x P(x) where, P(x) = ∃y Q(x,y) 



Name Rule of Inference Example:

1 Addition 𝑃
∴P∨Q 

P= He studies very hard
P∨Q = Either he studies very hard Or he is a very bad student
Q = he is a very bad student

2 Conjunction P
𝑄

∴P∧Q 

P = He studies very hard
Q = He is the best boy in the class
P∧Q = He studies very hard and he is the best boy in the class

3 Simplification P∧Q
∴P 

P∧Q = He studies very hard and he is the best boy in the class
P = He studies very hard

4 Modus Ponens P -> Q
𝑃
∴Q 

P→Q = If you have a password, then you can log on to facebook
P = You have a password
Q = You can log on to facebook

5 Modus Tollens P -> Q
¬𝑄
∴¬P

P→Q = If you have a password, then you can log on to facebook
¬Q = You cannot log on to facebook
¬P = You do not have a password

6 Disjunctive Syllogism P ∨Q
¬𝑃
∴Q

¬P = The ice cream is not vanilla flavored
P∨Q = The ice cream is either vanilla flavored or chocolate flavored
Q = The ice cream is chocolate flavored

7 Hypothetical Syllogism P -> Q
𝑄	 → 𝑅
∴P → 𝑅 

P→Q = If it rains, I shall not go to school
Q→R = If I don't go to school, I won't need to do homework 
P→R = If it rains, I won't need to do homework

8 Constructive Dilemma (P -> Q) ∧ (R -> S)
P∨R
∴Q∨S

(P→Q) = If it rains, I will take a leave
(R→S) = If it is hot outside, I will go for a shower
P∨R = Either it will rain or it is hot outside
Q∨S = I will take a leave or I will go for a shower

9 Destructive Dilemma (P -> Q) ∧ (R -> S)
¬Q∨¬S
∴¬P∨¬R 

(P→Q) = If it rains, I will take a leave
(R→S) = If it is hot outside, I will go for a shower
¬Q∨¬S = Either I will not take a leave or I will not go for a shower
¬P∨¬R = Either it does not rain or it is not hot outside

Rules of Inference:  

• Rule of inference are 
templates for constructing 
valid arguments. 

• Inference means driving a 
conclusion from 
evidences.

 
• Evidences are premises or 

hypothesis. 

• Rule of inference are 
themselves arguments that 
are used to construct valid 
arguments

• The symbol “∴ ”, (read as 
therefore) is placed before 
the conclusion. 
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