UGC NET Paper 2 Computer Science and Applications Code No.:(87)

Unit 1: Discrete Structures and Optimization

- 1. Mathematical Logic
- 2. Sets and Relations
- 3. Counting, Mathematical Induction and Discrete Probability
- 4. Group Theory
- 5. Graph Theory
- 6. Boolean Algebra
- 7. Optimization

Mathematical Logic:

- 1. Propositional and Predicate Logic
- 2. Propositional Equivalences
- 3. Normal Forms
- 4. Predicates and Quantifiers
- 5. Nested Quantifiers
- 6. Rules of Inference

Sets and Relations:

- 1. Set Operations
- 2. Representation and Properties of Relations
- 3. Equivalence Relations
- 4. Partially Ordering.

Counting, Mathematical Induction and Discrete Probability:

- 1. Basics of Counting,
- 2. Pigeonhole Principle
- 3. Permutations and Combinations
- 4. Inclusion- Exclusion Principle
- 5. Mathematical Induction
- 6. Probability
- 7. Bayes' Theorem

Group Theory:

- 1. Groups, Subgroups
- 2. Semi Groups
- 3. Product and Quotients of Algebraic Structures
- 4. Isomorphism
- 5. Homomorphism
- 6. Automorphism
- 7. Rings
- 8. Integral Domains
- 9. Fields
- 10. Applications of Group Theory

Graph Theory:

- 1. Simple Graph
- 2. Multigraph
- 3. Weighted Graph
- 4. Paths and Circuits
- 5. Shortest Paths in Weighted Graphs
- 6. Eulerian Paths and Circuits
- 7. Hamiltonian Paths and Circuits
- 8. Planner graph
- 9. Graph Coloring
- 10. Bipartite Graphs
- 11. Trees and Rooted Trees
- 12. Prefix Codes
- 13. Tree Traversals
- 14. Spanning Trees and Cut-Sets

Boolean Algebra:

- 1. Boolean Functions and its Representation
- 2. Simplifications of Boolean Functions.

Optimization:

- 1. Linear Programming Mathematical Model
- 2. Graphical Solution
- 3. Simplex and Dual Simplex Method
- 4. Sensitive Analysis
- 5. Integer Programming
- 6. Transportation and Assignment Models
- 7. PERT-CPM: Diagram Representation
- 8. Critical Path Calculations
- 9. Resource Levelling
- 10. Cost Consideration in Project Scheduling.

1. Mathematical Logic

- 1. Propositional and Predicate Logic
- 2. Propositional Equivalences
- 3. Normal Forms
- 4. Predicates and Quantifiers
- 5. Nested Quantifiers
- 6. Rules of Inference

Propositional Logic / Boolean Logic: A proposition is a collection of declarative statements that has either a truth value "true" or a truth value "false".

Examples of Propositions

- "Man is Mortal", it returns truth value "TRUE"
- "12 + 9 = 3 2", it returns truth value "FALSE"

Propositional Logic consists of:

- 1. propositional variables
- 2. Connectives: connectives connect the propositional variables.
 - \Box OR (V)
 - \Box AND (\land)
 - \Box Negation/ NOT (\neg)
 - \Box Implication / if-then / conditional statement (\rightarrow)
 - \Box If and only if / bi-conditional statement (\Leftrightarrow).

Terminologies:

- 1. Tautologies: always true
- 2. Contradictions: always false
- 3. Contingency: has both some true and some false values

OR (V)			
A B		A V B	
True	True	True	
True	False	True	
False	True	True	
False	False	False	

Implication if-then (\rightarrow)			
$\begin{array}{ c c c } A & B & A \rightarrow B \end{array}$			
True	True	True	
True	False	False	
False	True	True	
False	False	True	

AND (A)				
Α	B	A ^ B		
True	True	True		
True	False	False		
False	True	False		
False	False	False		

Negation NOT (¬)		
A	$\neg \mathbf{A}$	
True	False	
False	True	

bi-conditional If and only if (\Leftrightarrow)				
A B A⇔				
True	True	True		
True	False	False		
False	True	False		
False	False	True		

Note:

• Inverse, Converse, and Contra-positive

Implication / if-then / conditional statement (\rightarrow) has two parts –

 $p \rightarrow q$ where,

- 1. Hypothesis, p
- 2. Conclusion, q

Inverse, Converse, and Contra-positive of conditional statement:

Eg: $p \rightarrow q \parallel IF$ you do your homework -> THEN you will not be punished

- Inverse: $\neg p \rightarrow \neg q \parallel$ IF you do not do your homework, THEN you will be punished
- Converse: $q \rightarrow p \parallel IF$ you will not be punished, THEN you do your homework
- Contra-positive: $\neg q \rightarrow \neg p \parallel IF$ you are punished, THEN you did not do your homework

Propositional Equivalences:

Two statements X and Y are logically equivalent if any of the following two conditions hold –

- □ The truth tables of each statement have the same truth values.
- \Box The bi-conditional statement X \Leftrightarrow Y is a tautology.

Example:

```
Prove \neg(AVB)and[(\negA)\land(\negB) are equivalent
```

	Testing by 1 st method (Matching truth table)					
Α	В	A V B	$\mathbf{A} \vee \mathbf{B} \mid \neg (\mathbf{A} \vee \mathbf{B})$		¬ B	$[(\neg A) \land (\neg B)]$
True	True	True	False	False	False	False
True	False	True	True False False True Fa		False	
False	True	True	ue False True False F		False	
False	FalseFalseTrueTrueTrue					
truth values of \neg (AVB)and[(\neg A) \land (\neg B) are same, hence the statements are equivalent.						

	Testing by 2 nd method (Bi-conditionality)					
]	Α	AB \neg (A ∨ B)[(¬A) ∧ (¬B)][¬ (A ∨ B)] \Leftrightarrow [(¬A) ∧ (¬B)		$[\neg (A \lor B)] \Leftrightarrow [(\neg A) \land (\neg B)]$		
	True	True	False	False	True	
	True	False	False	alse False True		
	False	True	FalseFalse			
	FalseFrueTrue					
	As $[\neg(A \lor B)] \Leftrightarrow [(\neg A) \land (\neg B)]$ is a tautology, the statements are equivalent.					

Tautologies: always true				
Exp.1	1 Exp.2 Tautologies			
True	True	True		
True	False	True		
False	True	True		
False	False	True		

bi-conditional If and only if (⇔)			
Exp.1Exp.2Exp.1 \Leftrightarrow Exp.2			
True True		True	
True False		False	
False	True	False	
False	False	True	

Normal Forms:

We can convert any proposition in two normal forms -

- Conjunctive normal form: A compound statement is in conjunctive normal form if it is obtained by operating AND among variables (negation of variables included) connected with ORs. In terms of set operations, it is a compound statement obtained by Intersection among variables connected with Unions. Examples
 - $(AVB) \land (AVC) \land (BVCVD)$
 - $(P \cup Q) \cap (Q \cup R)$
- Disjunctive normal form: A compound statement is in disjunctive normal form if it is obtained by operating OR among variables (negation of variables included) connected with ANDs. In terms of set operations, it is a compound statement obtained by Union among variables connected with Intersections. Examples
 - $(A \land B) \lor (A \land C) \lor (B \land C \land D)$
 - $(P \cap Q) \cup (Q \cap R)$

Predicate Logic:

- A predicate is an expression of one or more variables defined on some specific domain.
- A predicate with variables can be made a proposition by either assigning a value to the variable or by quantifying the variable.
- Predicate Logic deals with predicates, which are propositions containing variables.
- examples of predicates:
 - \Box Let E(x, y) denote "x = y"
 - $\Box \text{ Let } X(a, b, c) \text{ denote } "a + b + c = 0"$
 - \Box Let M(x, y) denote "x is married to y"

Quantifiers: There are two types of quantifiers in predicate logic -

- **1.** Universal Quantifier ∀: denoted by the symbol ∀ (while the symbol ∀ is read as "For all")
- Notation: $\forall x P(x) \{ Read as: "For all x, P(x)", "For every x, P(x)" \}$
- Universal quantifier of P(x) is the statement "P(x) is true for all values of x in the domain"
- Example Let P(x) = "x+1 > x" where domain = set of positive integers
- Check: x=1; 1+1 > 1 :: P(x) is true
 - x=2; 2+1 > 2 : P(x) is true
 - x=3; 3+1 > 3 : P(x) is true
 - Since P(x) is true for all values of $x \therefore P(x) = "x+1 > x"$ is a Universal Quantifier
- **2.** Existential Quantifier \exists : denoted by the symbol \exists (while the symbol \exists is read as "There exists")
- Notation: $\exists x P(x) \{ \text{Read as: "There exist an } x \text{ such that } P(x) ", "There is at least one x such that } P(x) ", "For some x P(x)" \}$
- Existential quantifier of P(x) is the statement "There exists an element x in the domain such that P(x)"
- Example Let $P(x) = x^2 > 10$ where domain = {1,2,3,4}
- Check: x=1; $1^2 > 10 :: P(x)$ is false
 - $x=2; 2^2 > 10 :: P(x)$ is false
 - $x=3; 3^2 > 10 :: P(x)$ is false
 - $x=4; 4^2 > 10 : P(x)$ is true
 - Since P(x) is true for $x=4 \therefore P(x) = "x^2 > 10"$ is an Existential Quantifier

Domainspecifiespossible values of thevariableunderconsideration.

Nested Quantifiers: Two quantifiers are nested if one is within the scope of the other.

Different combinations of nested quantifiers

- $\forall x \forall y Q(x,y)$ Here Order of quantifiers doesn't matter
- $\forall x \exists y Q(x,y)$ Here Order of quantifiers does matter
- $\exists x \forall y Q(x,y)$ Here Order of quantifiers does matter
- $\exists x \exists y Q(x,y)$ Here Order of quantifiers doesn't matter

i.e., $\forall x \forall y Q(x,y) = \forall y \forall x Q(x,y)$ *i.e.*, $\forall x \exists y Q(x,y) \neq \exists y \forall x Q(x,y)$ *i.e.*, $\exists x \forall y Q(x,y) \neq \forall y \exists x Q(x,y)$ *i.e.*, $\exists x \exists y Q(x,y) = \exists y \exists x Q(x,y)$

Note:

Anything within the scope of a quantifier can be thought as a prepositional function For example: $\forall x \exists y Q(x,y)$

Here essential quantifier is within the scope of a universal quantifier

Therefore, we can write it as: $\forall x P(x)$

 $\forall x \exists y Q(x,y) = \forall x P(x) \text{ where, } P(x) = \exists y Q(x,y)$

<u>Rules of Inference</u>:

- Rule of inference are templates for constructing valid arguments.
- Inference means driving a conclusion from evidences.
- Evidences are premises or hypothesis.
- Rule of inference are themselves arguments that are used to construct valid arguments
- The symbol ": ", (read as therefore) is placed before the conclusion.

	Name	Rule of Inference	Example:
1	Addition	$\frac{P}{\therefore P \lor Q}$	P= He studies very hard PVQ = Either he studies very hard Or he is a very bad student Q = he is a very bad student
2	Conjunction	$\frac{P}{Q}$	P = He studies very hard Q = He is the best boy in the class $P \land Q =$ He studies very hard and he is the best boy in the class
3	Simplification	$\frac{P \land Q}{\therefore P}$	$P \land Q$ = He studies very hard and he is the best boy in the class P = He studies very hard
4	Modus Ponens	$P \rightarrow Q$ $\frac{P}{\therefore Q}$	$P \rightarrow Q = If$ you have a password, then you can log on to facebook P = You have a password Q = You can log on to facebook
5	Modus Tollens	$P \rightarrow Q$ $\neg Q$ $\vdots \neg P$	$P \rightarrow Q =$ If you have a password, then you can log on to facebook ¬Q = You cannot log on to facebook ¬P = You do not have a password
6	Disjunctive Syllogism	$ \begin{array}{c} P \lor Q \\ \neg P \\ \hline \vdots Q \end{array} $	$\neg P$ = The ice cream is not vanilla flavored PVQ = The ice cream is either vanilla flavored or chocolate flavored Q = The ice cream is chocolate flavored
7	Hypothetical Syllogism	$ \begin{array}{c} P \to Q \\ Q \to R \\ \hline \therefore P \to R \end{array} $	$P \rightarrow Q = If$ it rains, I shall not go to school $Q \rightarrow R = If I$ don't go to school, I won't need to do homework $P \rightarrow R = If$ it rains, I won't need to do homework
8	Constructive Dilemma	$(P \rightarrow Q) \land (R \rightarrow S)$ $\frac{P \lor R}{\because Q \lor S}$	$(P \rightarrow Q) = If$ it rains, I will take a leave $(R \rightarrow S) = If$ it is hot outside, I will go for a shower $P \lor R = Either$ it will rain or it is hot outside $Q \lor S = I$ will take a leave or I will go for a shower
9	Destructive Dilemma	$(P \rightarrow Q) \land (R \rightarrow S)$ $\neg Q \lor \neg S$ $\overrightarrow{\neg P \lor \neg R}$	$(P \rightarrow Q) = If$ it rains, I will take a leave $(R \rightarrow S) = If$ it is hot outside, I will go for a shower $\neg QV \neg S = Either I$ will not take a leave or I will not go for a hower $\neg PV \neg R = Either$ it does not rain or it is not hot outside

1. Mathematical Logic

- 1. Propositional Logic
- 2. Propositional Equivalences
- 3. Normal Forms
- 4. Predicate Logic
- 5. Quantifiers
- 6. Nested Quantifiers
- 7. Rules of Inference

